Use These Resources to Hone Your Data Science
Skills
Books
Statistical Modeling in Biology
-
Bolker BM. 2008. Ecological Models and Data in R. Princeton,
NJ: Princeton University Press.
-
Irizarry RA, Love MI. 2015. Data Analysis for the Life
Sciences. Lean Publishing.
-
Quinn GP, Keough MJ. 2002. Experimental Design and Data Analysis for
Biologists. Cambridge, UK: Cambridge University Press.
R and Basic Statistics
-
Caffo B. 2015. Statistical Inference for Data Science. Lean
Publishing.
-
Caffo B. 2016. Regression Models for Data Science in R. Lean
Publishing.
-
Dalgaard P. 2008. Introductory Statistics with R (Second
Edition). New York: Springer.
-
Navarro DJ. 2024. Learning Statistics with
R (v. 0.6). CC BY-SA 4.0
-
Shahbaba B. 2012. Biostatistics with R. New York: Springer.
-
Thulin M. 2024. Modern Statistics with
R (Second Edition). New York: Springer.
R Programming
-
Adler J. 2009. R in a Nutshell. Sebastopol, CA: O’Reilly Media.
-
Kabacoff RI. 2011. R in Action: Data Analysis and Graphics with
R. Shelter Island, NY: Manning Publications Co.
-
Matloff N. 2011. The Art of R Programming: A Tour of Statistical
Software Design. San Francisco: No Starch Press.
-
Peng R. 2016. R Programming for Data Science. Lean Publishing.
-
Peng R. 2016. Exploratory Data Analysis with R. Lean
Publishing.
-
Zuur AF, Ieno EN, Meesters EHWG. 2009. A Beginner’s Guide to R.
New York: Springer.
R Reference
-
Crawley MJ. 2012. The R Book (Second Edition). Chichester, UK:
John Wiley & Sons Ltd.
-
Gardener M. 2012. The Essential R Reference. Indianapolis, IN:
John Wiley & Sons, Inc.
-
Teetor P. 2011. R Cookbook. Sebastopol, CA: O’Reilly Media.
R Graphics
-
Chang W. 2013. R Graphics Cookbook. Sebastopol, CA: O’Reilly
Media.
-
Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis (Second
Edition). Springer International Publishing.
Data Science and Visualization
-
Dale K. 2016. Data Visualization with Python and JavaScript.
Sebastopol, CA: O’Reilly Media.
-
Grus J. 2015. Data Science from Scratch. Sebastopol, CA:
O’Reilly.
-
Kazil J, Jarmul K. 2016. Data Wrangling with Python.
Sebastopol, CA: O’Reilly.
-
Peng RD, Matsui E. 2015. The Art of Data Science. Lean
Publishing.
-
Zumel N, Mount J. 2014. Practical Data Science with R. Shelter
Island, NY: Manning Publications Co.
Spatial Analysis
-
Bivand RS, Pebesma E, Gómez-Rubio V. 2013. Applied Spatial Data
Analysis with R (Second Edition). New York: Springer.
-
Brundson C, Comber L. 2015. An Introduction to R for Spatial
Analysis and Mapping. London: SAGE Publications, Ltd.
Mixed Effects Models
-
Garamszegi LZ. 2014. Modern Phylogenetic Comparative Methods and
Their Application in Evolutionary Biology. Berlin: Springer.
-
Pinheiro JC, Bates DM. 2000. Mixed-Effects Models in S and
S-Plus. New York: Springer.
-
Zuur AF, Ieno EN, Walker NJ, Savaliev AA, Smith GM. 2009. Mixed
Effects Models and Extensions in Ecology with R. New York:
Springer.
Web Scraping and Text Mining
-
Friedl JEF. 2000. Mastering Regular Expressions (Third Edition).
Sebastopol, CA: O’Reilly Media.
-
Mitchell R. 2015. Web Scraping with Python. Sebastopol, CA: O’Reilly
Media.
-
Nolan D, Temple Lang D. 2014. XML and Web Technologies for Data Sciences
with R. New York: Springer.
Statistics and Programming in Python
-
Downey A. 2014. Think Stats (Second Edition). Sebastopol, CA: O’Reilly
Media.
-
Lubanovic B. 2014. Introducing Python. Sebastopol, CA: O’Reilly Media.
-
McKinney W. 2013. Python for Data Analysis. Sebastopol, CA: O’Reilly.